64 | 0 | 16 |
下载次数 | 被引频次 | 阅读次数 |
针对向斜构造区厚硬顶板巷道围岩冲击变形破坏严重等问题,采用理论分析、数值模拟和现场实测等方法,研究了向斜构造区厚硬顶板巷道冲击破坏机理,提出了巷道围岩卸支协同防冲控制措施,有效提升了巷道围岩稳定性。研究表明,向斜构造区厚硬顶板存在压应力集中区,形成矿井冲击震源层;向斜轴部巷道3~6 m范围内存在23.95~41.16 MPa的高静载应力集中带,静动载应力叠加巷道冲击破坏严重;向斜轴部巷道帮部围岩浅表裂隙发育,锚杆锚固性能差,顶板锚索动载抗冲性能差,冲击作用下易产生一定损伤;采用全断面卸压与深锚补强加固协同防冲控制技术,切断了巷道围岩应力以及动载应力波传递路径,提升了巷道围岩锚固抗冲性能,巷道围岩变形量降低63.57%~65.90%,大能量微震事件减少,小能量微震事件增加,巷道围岩稳定性增强。
Abstract:In view of the serious impact deformation and damage of the hard and thick roof roadway surrounding rock in the syncline structure area, we adopt theoretical analysis, numerical simulation, and on-site measurement methods to study the impact damage mechanism of the hard and thick roof roadway in the syncline structure area.A collaborative anti-impact control measure for the unsupport of roadway surrounding rock, effectively improving the stability of the roadway surrounding rock.Research has shown that there is a concentrated area of compressive stress in the hard and thick roof of the syncline structure, forming a seismic source layer for mine impact.There is a high static stress concentration zone of 23.95~41.16 MPa within a range of 3~6 m in the synclinal axis roadway, and the impact damage of the roadway is severe due to the superposition of static and dynamic stress.The shallow cracks in the surrounding rock of the synclinal axis roadway are developed, and the anchoring performance of anchor rods is poor.The dynamic load and impact resistance performance of the roof anchor cables are poor, which is prone to certain damage.By adopting the collaborative anti-impact control technology of full section pressure relief and deep anchor reinforcement, the stress and dynamic load stress wave transmission path of the surrounding rock of the roadway are cut off, improving the anchoring and anti-impact performance of the surrounding rock of the roadway.The deformation of the surrounding rock of the roadway is reduced by 63.57% to 65.90%,and high-energy microseismic events are reduced, while small energy microseismic events are increased, enhancing the stability of the surrounding rock of the roadway.
[1] 潘一山,宋义敏,刘军.我国煤矿冲击地压防治的格局、变局和新局[J].岩石力学与工程学报,2023,42(9):2081-2095.
[2] 王国法,潘一山,赵善坤,等.冲击地压煤层如何实现安全高效智能开采[J].煤炭科学技术,2024,52(1):1-14.
[3] 潘一山,肖永惠,罗浩,等.冲击地压矿井安全性研究[J].煤炭学报,2023,48(5):1846-1860.
[4] 何满潮,武毅艺,高玉兵,等.深部采矿岩石力学进展[J].煤炭学报,2024,49(1):75-99.
[5] 康永水,刘泉声,刘滨,等.深部岩巷精准介入围岩结构的分步联合支护技术探索[J].岩石力学与工程学报,2023,42(11):2682-2693.
[6] 朱永建,李鹏,王平,等.深部高应力煤巷围岩径向梯度损伤特征试验研究[J].岩石力学与工程学报,2023,42(11):2643-2654.
[7] 赵耀中,张宁博,邓志刚,等.褶曲构造型矿区地应力场分布特征与冲击机制[J].煤矿安全,2019,50(5):23-26.
[8] 展亚太,王金安,李飞,等.褶曲构造对煤巷围岩破裂范围及动压影响分析[J].煤矿安全,2018,49(9):257-261.
[9] 张科学,朱俊傲,何满潮,等.向斜作用下回采巷道冲击地压力学分析及冲击特性研究[J].煤炭科学技术,2022,50(7):84-98.
[10] 王联合,曹安业,郭文豪,等.“断层-褶皱”构造区巷道冲击地压机理及失稳规律[J].采矿与安全工程学报,2023,40(1):69-81.
[11] 卜庆为,涂敏,张向阳,等.采场厚硬顶板破断失稳与能量聚散演化研究[J].采矿与安全工程学报,2022,39(5):867-878.
[12] 高明仕,徐东,贺永亮,等.厚硬顶板覆岩冲击矿震影响的远近场效应研究[J].采矿与安全工程学报,2022,39(2):215-226.
[13] 李文龙,屠世浩,郝定溢,等.推采速度和充实率对深井充填面厚硬顶板聚能与释能的影响[J].中国矿业大学学报,2021,50(3):498-506.
[14] 王书文,智宝岩,杜涛涛,等.厚硬顶板潜在矿震风险地面压裂预控技术[J].煤炭科学技术,2023,51(11):1-11.
[15] 潘俊锋,刘少虹,高家明,等.深部巷道冲击地压动静载分源防治理论与技术[J].煤炭学报,2020,45(5):1607-1613.
[16] 潘俊锋,齐庆新,刘少虹,等.我国煤炭深部开采冲击地压特征、类型及分源防控技术[J].煤炭学报,2020,45(1):111-121.
[17] 潘俊锋,康红普,闫耀东,等.顶板“人造解放层”防治冲击地压方法、机理及应用[J].煤炭学报,2023,48(2):636-648.
[18] 王宏伟,邓代新,姜耀东,等.巨厚坚硬顶板变形及垮落的动态演化特征研究[J].矿业科学学报,2021,6(5):548-557.
[19] 李青海,辛恒奇,刘丽,等.厚层坚硬顶板巷道围岩冲击破坏力学分析及解危方案[J].煤炭科学技术,2020,48(S2):228-232.
[20] 吴芸.褶皱构造区开采应力场分布与覆岩空间结构演化规律研究[D].徐州:中国矿业大学,2018.
基本信息:
DOI:10.20120/j.cnki.issn.1671-749x.2025.0203
中图分类号:TD324
引用信息:
[1]杨皓博,李晶昆.向斜构造区厚硬顶板巷道冲击破坏机理研究[J].陕西煤炭,2025,44(02):17-23+29.DOI:10.20120/j.cnki.issn.1671-749x.2025.0203.
基金信息: