nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.44 6-16
基于数值模拟高强度开采条件下天然气井受力及水平变形特征研究
基金项目(Foundation): 国家自然科学基金资助项目(52174139)
邮箱(Email):
DOI: 10.20120/j.cnki.issn.1671-749x.2025.0202
摘要:

针对煤-天然气同采区煤层高强度开采引起的覆岩移动变形导致气井失稳问题,基于小保当二号煤矿地质、开采技术条件及现场实测数据,通过数值模拟研究了超长超宽工作面高强度开采条件下,气井套管-水泥环组合体的剪切受力及水平变形特征,分析得到了沿套管轴向易发生变形的位置及岩层分布特征对气井稳定性的影响。结果表明,关键层以上至地表范围内覆岩以拉伸变形为主,关键层及下伏相邻岩层以剪切变形为主。倾向上132204-132206工作面多重采动影响下气井套管最大剪应力为208.5 MPa,为许用剪切强度255 MPa的81.76%,最大水平位移为87.3 mm。沿132205工作面走向留设180 m宽气井保护煤柱,工作面自二次切眼推进250 m后,套管达到最大剪应力169.5 MPa,为许用剪切强度的66.5%,最大水平位移为83.1 mm,留设180 m宽保护煤柱能够保障气井的完整性。研究结果对于合理确定小保当二号煤矿井田内其他气井保护煤柱尺寸、预防井筒失效、实现煤-天然气资源协同开发具有重要价值和意义。

Abstract:

Aiming at the problem of gas well instability caused by the moving deformation of overburden caused by high-intensity mining of coal seams in the coal-gas co-mining, based on the geological and mining technological conditions of Xiaobaodang No.2 Coal Mine and the on-site measured data, the shear force and horizontal deformation characteristics of the casing-cement ring combination of gas wells under the conditions of high-intensity mining of ultra-long and ultra-wide working face were investigated by numerical simulation.The influence of the easily deformed locations along the axial direction of the casing and the rock formation's distribution characteristics on the gas well's stability were analyzed and obtained.The results show that tensile deformation dominates the overburden above the key stratum to the surface, while shear deformation dominates the key stratum and the underlying adjacent rock layers.The maximum shear stress of gas well casing under the influence of multiple extractions in 132204-132206 working faces on the tendency is 208.5 MPa, which is 81.76% of the permissible shear strength of 255 MPa, and the maximum horizontal displacement is 87.3 mm.Along the 132205 working face, 180 m wide gas well was left to protect the coal pillar.After advancing 250 m from the second setup entry, the casing reached the maximum shear stress of 169.5 MPa, which was 66.5% of the permissible shear strength, and the maximum horizontal displacement was 83.1 mm, so the gas well with 180 m of coal pillar protection was able to maintain a good integrity.The results of the study are of great value and significance for rationally determining the size of protective coal pillars of other gas wells in the Xiaobaodang No.2 Coal Mine field, preventing wellbore failure and realizing the synergistic development of coal-gas resources.

参考文献

[1] 袁亮.煤及共伴生资源精准开采科学问题与对策[J].煤炭学报,2019,44(1):1-9.

[2] 袁亮,张通,赵毅鑫,等.煤与共伴生资源精准协调开采:以鄂尔多斯盆地煤与伴生特种稀有金属精准协调开采为例[J].中国矿业大学学报,2017,46(3):449-459.

[3] 孙海涛,舒龙勇,姜在炳,等.煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J].煤炭科学技术,2022,50(12):1-13.

[4] LIANG S,ELSWORTH D,LI X,et al.Dynamic impacts on the survivability of shale gas wellspiercing longwall panels[J].Journal of Natural Gas Science and Engineering,2015,26:1130-1147.

[5] LIANG S,LI X,YAO Q,et al.Influence of weak interlayer contacts on the stability of shale gas wells transiting minable coal seams[J].Journal of Mining and Safety Engineering,2015,32(3):471-477.

[6] LIANG S,ELSWORTH D,LI X,et al.Key strata characteristics controlling the integrity of deep wells in longwall mining areas[J].International Journal of Coal Geology,2017,172:31-42.

[7] LIANG S,ELWORTH D,LI X,et al.Topographic influence on stability for gas wells penetrating longwall mining areas[J].International Journal of Coal Geology,2014,132:23-23.

[8] 梁顺,李学华,姚强岭,等.层间弱接触面对穿煤层页岩气井稳定性的影响[J].采矿与安全工程学报,2015,32(3):471-477.

[9] 陈陆根,何力,李辉,等.采煤沉陷影响下油气井套管变形数值模拟研究[J].煤炭技术,2019,38(11):34-36.

[10] 杨婧,蔡峰,封居强.采动影响下煤层气井失稳机制及防失稳技术探讨[J].华北科技学院学报,2022,19(1):38-43.

[11] 王文,任建东,李小军,等.开采沉陷区天然气井避让距离控制预测方法研究[J].中国矿业大学学报,2021,50(5):943-954.

[12] 孙海涛,林府进,张军.地面钻井剪切变形破坏模型及其空间分布规律分析[J].采矿与安全工程学报,2011,28(1):72-76.

[13] 孙海涛,郑颖人,胡千庭,等.地面钻井套管耦合变形作用机理[J].煤炭学报,2011,36(5):823-829.

[14] SU W H.Effects of longwall-induced stress and deformation on the stability and mechanical integrity of shale gas wells drilled through a longwall abutment pillar[J].International Journal Mining Science and Technology,2017,27(1):115-120.

[15] 孙海涛.采动影响下地面钻井的变形破坏机理研究[D].重庆:重庆大学,2008.

[16] 刘应科.远距离下保护层开采卸压特性及钻井抽采消突研究[D].徐州:中国矿业大学,2012.

[17] 徐宏杰,桑树勋,韩家章,等.岩体结构与地面瓦斯抽采井稳定性的关系[J].采矿与安全工程学报,2011,28(1):90-95.

[18] CHEN J,WANG T,ZHOU Y,et al.Failure modes of the surface venthole casing during longwall coal extraction:a case study[J].Int J Coal Geol,2012,90-91:135-148.

[19] WHITTLES D N,LOWNDES I S,KINGMAN S W,et al.The stability of methane capture boreholes around along wall coal panel[J].Int J Coal Geol,2007,71(2-3):313-328.

[20] 王文,任建东,王付斌,等.鄂尔多斯盆地“煤气走廊”开采模式研究[J].金属矿山,2019,49(10):23-31.

[21] 郭文兵,王云广.基于绿色开采的高强度开采定义及其指标体系研究[J].采矿与安全工程学报,2017,34(4):616-623.

[22] 吕英民,陈海亮,仇伟德.材料力学(Ⅰ)[M].东营:石油大学出版社,1994.

[23] GB/T 19830—2017,石油天然气工业油气井套管或油管用钢管[S].

基本信息:

DOI:10.20120/j.cnki.issn.1671-749x.2025.0202

中图分类号:TE37

引用信息:

[1]徐裴,麻银斗,白喜成等.基于数值模拟高强度开采条件下天然气井受力及水平变形特征研究[J].陕西煤炭,2025,44(02):6-16.DOI:10.20120/j.cnki.issn.1671-749x.2025.0202.

基金信息:

国家自然科学基金资助项目(52174139)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文