1,470 | 16 | 73 |
下载次数 | 被引频次 | 阅读次数 |
随着工业发展,高效水处理技术的开发与应用变得越来越重要。高级氧化技术在废水处理方面具有高效、快速、无二次污染等特点而受到研究者的广泛关注。目前,高级氧化技术及其催化剂技术在废水处理方面已取得大量研究成果。在已有的研究中,高级氧化处理过程中,催化剂可有效促进自由基的快速生成和高效利用,提高反应速率,最终实现温和反应条件下的废水处理。文中介绍了高级氧化处理技术,评述了芬顿氧化及其催化剂、类芬顿氧化及其催化剂、臭氧氧化及其催化剂、湿式氧化及其催化剂、微波氧化及其催化剂、光催化氧化及其催化剂技术的研究进展,并对高级氧化技术的发展进行了展望。
Abstract:With the development of industry,the development and application of high efficient water treatment technology become more and more important. Advanced oxidation technology in wastewater treatment has the characteristics of high efficiency,fast,no secondary pollution and so on. At present,advanced oxidation technology and its catalyst technology have achieved a lot of research results in wastewater treatment. In the process of advanced oxidation treatment,catalyst can effectively promote the rapid generation and efficient utilization of free radicals,improve the reaction rate,and finally achieve the wastewater treatment under mild reaction conditions. The paper introduces the advanced oxidation technology,reviews the research progress of Fenton oxidation and its catalyst,Fenton like oxidation and its catalyst,ozone oxidation and its catalyst,wet oxidation and its catalyst,microwave oxidation and its catalyst,and photocatalysis oxidation and its catalyst technology,and prospects the development prospect of advanced oxidation technology.
[1]方景礼.废水处理的实用高级氧化技术第一部分——各类高级氧化技术的原理、特性和优缺点[J].电镀与涂饰,2014,33(8):350-355.
[2]谢成,晏波,韦朝海.焦化废水Fenton氧化预处理过程中主要有机污染物的去除[J].环境科学学报,2007,27(7):1102-1105.
[3]HOU X J,HUANG X P,JIA F L,et al.Hydroxylamine promoted goethite surface fenton degradation of organic pollutants[J].Environmental Science&Technology,2017,51:5118-5126.
[4]HU Y,LI Y L,HE J Y,et al.EDTA-Fe(III)Fentonlike oxidation for the degradation of malachite green[J].Journal of Environmental Management,2018,226(15):256-263.
[5]吕来,胡春.多相芬顿催化水处理技术与原理[J].化学进展,2017,29(9):981-999.
[6]LYU L,ZHANG L L,HU C.Enhanced fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres[J].Chemical Engineering Journal,2015,274:298-306.
[7]LYU L,ZHANG L L,WANG Q Y,et al.Enhanced fenton catalytic efficiency ofγ-Cu-Al2O3byσ-Cu2+-ligand complexes from aromatic pollutant degradation[J].Environmental Science&Technology,2015,49(14):8639-8647.
[8]LIAO C J,CHUNG Taylung,CHEN W L,et al.Treatment of pentachlorophenol contaminated soil using nano-scale zero-valent iron with hydrogen peroxide[J].Journal of Molecular Catalysis A-Chemical,2007,265(1-2):189-194.
[9]孔令涛,李兴发,张峰.中性条件下Fe2O3-Cu O/Al2O3/SBA-15催化降解焦化废水的研究[J].煤炭技术,2018,37(10):357-359.
[10]WANG X Y,LIAO Y L,XIANG Q J,et al.Magnetite/iron foil as an effective and nonfiltration catalyst for heterogeneous fenton-like reactions under neutral conditions[J].Inorganic Chemistry,2019,58:4718-4721.
[11]XU T Y,ZHU R L,ZHU G Q,et al.Mechanisms for the enhanced photo-fenton activity of ferrihydrite modified with Bi VO4at neutral p H[J].Applied Catalysis B:Environmental,2017,212:50-58.
[12]ZHANG A L,HUANG X,NAN Z D.Facile synthesis of 3D-Structured Ni S as an excellent Fenton-like catalyst under various p H through different mechanisms[J].Inorganic Chemistry,2019,58(20):14136-14144.
[13]XING M Y,XU W J,DONG C C,et al.Metal sulfides as excellent Co-catalysts for H2O2decomposition in advanced oxidation process[J].Chem,2018,4(6):1359-1372.
[14]HU L M,ZHANG G S,WANG Q,et al.Effect of microwave heating on persulfate activation for rapid degradation and mineralization of p-nitrophenol[J].ACS Sustainable Chemistry&Engineering,2019,7(13):11662-11671.
[15]AVETTA Paola,PENSATO Alessia,MINELLA Marco,et al.Activation of persulfate by irradiated magnetite:Implications for the degradation of phenol under heterogeneous Photo-Fenton-Like conditions[J].Environmental Science&Technology,2015,4(92):1043-1050.
[16]张坤坤.过硫酸盐催化氧化含酚废水的研究[D].西安:西安科技大学,2013.
[17]吴彦霖.基于羟基自由基(HO·)和硫酸根自由基(SO-4·)的高级氧化技术的研究[D].上海:复旦大学,2014.
[18]陈晴空.基于SO-4·的非均相类Fenton-光催化协同氧化体系研究[D].重庆:重庆大学,2014.
[19]陈炜彧,李旭芳,马鲁铭.铁基催化剂催化臭氧深度处理煤化工废水[J].环境工程学报,2018,39(1):86-92.
[20]张国涛,万新华,李伟,等.微量臭氧催化氧化深度处理煤气化废水[J].环境工程学报,2013,34(1):263-267.
[21]庄海峰.催化臭氧化-生物组合工艺深度处理煤制气废水效能的研究[D].哈尔滨:哈尔滨工业大学,2015.
[22]何灿,刘鲤粽,何文丽.臭氧催化氧化深度处理焦化废水的试验研究[J].洁净煤技术,2016,22(5):53-58.
[23]岳山,杨永哲,杨宏勃,等.Ce O2-MgO/AC催化剂开发及臭氧催化氧化深度处理制药废水[J].水处理技术,2017,43(9):109-114.
[24]孙珮石,杨英,陈嵩,等.湿式催化氧化处理炼油碱渣废水试验研究[J].水处理技术,2005,31(1):46-50.
[25]孙文静,卫皇曌,李先如,等.催化湿式氧化处理助剂废水工程及过程模拟[J].环境工程学报,2018,39(8):2421-2428.
[26]公彦猛,姜伟立,李爱民,等.高浓度有机废水湿式氧化处理的研究现状[J].工业水处理,2017,37(5):20-49.
[27]施向荣,丁洁莲,赵浩,等.改性氧化铝微波诱导催化氧化处理高浓度苯酚废水的研究[J].环境工程学报,2011,32(7):1469-1473.
[28]徐仿海,雷辉.焦粉吸附-微波催化-芬顿试剂氧化法深度处理煤焦油加工废水的研究[J].当代化工,2016,45(3):481-484.
[29]孟海玲,张回,刘再亮,等.响应曲面法优化微波诱导载铜活性炭处理焦化废水[J].环境工程学报,2017,38(2):872-878.
[30]游迪,臧韬,洪永,等.铁磁性单晶Ti O2光催化剂对染料污水的降解[J].青岛科技大学学报(自然科学版),2018,39(S1):75-78.
[31]刘鹏.紫外催化氧化处理高浓度难降解化学镀废液研究[D].哈尔滨:哈尔滨工业大学,2014.
[32]郭烨,薛仕丽,井然,等.两种MOFs材料降解染料废水的光催化活性[J].延安大学学报(自然科学版),2018,37(1):59-62.
基本信息:
DOI:
中图分类号:X703
引用信息:
[1]李克伦,张生军,田士东等.高级氧化及其催化剂技术在废水处理中的进展[J].陕西煤炭,2020,39(S1):154-158.
基金信息:
陕西省科技厅资助项目(2017GY-158)