nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.44 85-89+114
禾草沟煤矿上行开采覆岩破坏特征及强矿压灾害防治研究
基金项目(Foundation):
邮箱(Email):
DOI: 10.20120/j.cnki.issn.1671-749x.2025.0615
摘要:

禾草沟煤矿5号煤层工作面巷道掘进过程中,频繁出现强矿压显现,导致顶板支护困难,严重影响采掘接替。为此,提出在503盘区实行上行开采的强矿压灾害治理方案,即首先回采下部较厚的3-2煤层,以对上部5号煤层进行卸压,从而避免强矿压显现。采用FLAC3D数值模拟软件,研究了3-2煤层开采后上覆岩层的移动和变形规律,重点分析了采动后覆岩裂隙演化以及顶板卸压程度,据此评估上行开采可行性以及对强矿压灾害防治效果。研究结果表明,采用上行开采后3-2煤层裂隙带高度最大为36.52 m,小于3-2煤层与5号煤层的间距,满足上行开采技术要求;5号煤层处于3-2煤层弯曲下沉带内,最大应力值仅为12.29 MPa,显著低于原岩应力,能够有效实现卸压。本研究为禾草沟煤矿503盘区上行开采提供了理论指导,为类似条件下的上行开采技术应用提供了科学依据。

Abstract:

During the excavation of roadway in the 5th coal seam working face at the Hecaogou Coal Mine, strong mine pressure frequently manifested, leading to difficulties in roof support and severely affecting the mining operation.An upward mining disaster prevention plan for strong mine pressure was proposed in the 503 panel area.This plan involves first recovering the thicker 3-2 coal seam below, thereby unloading pressure from the upper 5th coal seam to prevent strong mine pressure from manifesting.FLAC3D numerical simulation software was used to investigate the movement and deformation patterns of the overlying rock layers after the mining of the 3-2nd coal seam.The focus was on analyzing the evolution of fractures in the overlying rock and the degree of pressure relief in the roof, which was then used to assess the feasibility of upward mining and its effectiveness in preventing and controlling strong mine pressure disasters.The results of the study showed that after upward mining, the height of the fracture zone in the 3-2 coal seam reached a maximum of 36.52 m, which is less than the distance between the 3-2 coal seam and the 5th coal seam, thus meeting the technical requirements for upward mining.The 5th coal seam is located within the subsidence zone of the 3-2 coal seam, where the maximum stress value is only 12.29 MPa, significantly lower than the original rock stress, indicating effective pressure relief.

参考文献

[1] 李杨,雷明星,郑庆学,等.近距离“薄—中—厚”交错分布煤层群上行协调开采定量判别研究[J].煤炭学报,2019,44(S2):410-418.

[2] 尹家宽,王立阳,王帆.浅埋多煤层上行开采可行性及开采滞后时间分析[J].能源与环保,2024,46(8):223-228.

[3] 查丽娟,申商坤.近距离煤层群上行开采可行性研究[J].煤炭技术,2023,42(7):67-70.

[4] 张勇,刘传安,张西斌,等.煤层群上行开采对上覆煤层运移的影响[J].煤炭学报,2011,36(12):1990-1995.

[5] 吴宝杨,邓志刚,冯宇峰,等.特殊条件下层间岩层对上行开采的影响分析[J].煤炭学报,2017,42(4):842-848.

[6] 冯国瑞,郑婧,任亚峰,等.垮落法残采区上行综采技术条件判定理论及方法[J].煤炭学报,2010,35(11):1863-1867.

[7] 袁光明,何团.基于统计分析的近距离煤层上行开采可行性判别方法[J].采矿与岩层控制工程学报,2021,3(3):21-31.

[8] 许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762-769.

[9] 许家林,鞠金峰,轩大洋,等.煤矿全生命周期绿色开采研究展望[J].绿色矿山,2023,1(1):79-90.

[10] 朱卫兵,王晓振,孔翔,等.覆岩离层区积水引发的采场突水机制研究[J].岩石力学与工程学报,2009,28(2):306-311.

[11] 轩大洋,许家林,冯建超,等.巨厚火成岩下采动应力演化规律与致灾机理[J].煤炭学报,2011,36(8):1252-1257.

[12] 许家林,钱鸣高.绿色开采的理念与技术框架[J].科技导报,2007,25(7):61-65.

基本信息:

DOI:10.20120/j.cnki.issn.1671-749x.2025.0615

中图分类号:TD325

引用信息:

[1]王立辉,赵建兵,郝凯凯等.禾草沟煤矿上行开采覆岩破坏特征及强矿压灾害防治研究[J].陕西煤炭,2025,44(06):85-89+114.DOI:10.20120/j.cnki.issn.1671-749x.2025.0615.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文