nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.44 51-56+78
特厚煤层临空掘进巷道围岩应力演化与防治技术研究
基金项目(Foundation):
邮箱(Email):
DOI: 10.20120/j.cnki.issn.1671-749x.2025.0609
摘要:

在特厚煤层巷道掘进过程中,如何在临空巷道掘进过程中保证巷道围岩稳定,降低掘进扰动产生的冲击风险是一个亟待解决的关键问题。采用理论分析、数值模拟、现场实测等方法,研究分析了临空巷道掘进过程中上覆岩层应力变化规律,提出了临空巷道掘进煤柱上覆岩层“应力重构”假设,分析了在3种应力状态下发生冲击的可能性;通过数值模拟,判断在不同煤柱尺寸下的巷道塑性区范围变化趋势。结果表明,特厚煤层临空巷道掘进过程中,二次掘进巷道应力值的升高是导致发生冲击的主要因素。通过数值模拟,当煤柱宽度大于等于30 m时,两侧的塑性区范围达到稳定,巷道两帮弹性能降到最低。采用应力监测和巷道三量监测进行效果检验,在煤柱宽度优化、“大直径+爆破卸压”“锚索+双网+大托盘”联合支护的基础上,最大应力值达到9 MPa,巷道围岩变形量均控制在巷道断面的10%以内,巷道掘进期间冲击地压防治效果显著,为后期冲击地压煤层临空掘进积累了经验。

Abstract:

In the process of excavating thick coal seam roadways, how to ensure the stability of the surrounding rock during the excavation of gob-side roadways and reduce the impact risk caused by excavation disturbance is a key problem that needs to be solved urgently.The paper uses analytical methods, numerical simulation, and field measurements to study the law of stress changes in the overlying rock layer of gob-side roadways during excavation.It proposes the “stress reconstruction” hypothesis for the overlying rock layer of the coal pillar in go-side roadways, analyzes the possibility of impact occurring under three stress states; and uses numerical simulation to determine the trend of the plastic zone range change in different coal pillar dimensions.The results show that: The secondary excavation of the gob-side roadway during the excavation of thick coal seam results in an increase of stress values, which is the main factor leading to the occurrence of impact.Through numerical simulation, when the width of the coal pillar is equal to or greater than 30 m, the plastic zone ranges on both sides reach stability, and the shear strength of the roadway sides is reduced to the lowest.The effects are verified by stress monitoring and monitoring of the three parameters of the roadway, and the maximum stress value reaches 9 MPa and the deformation of the surrounding rock in the roadway is controlled within 10% of the cross-sectional area of the roadway after optimizing the width of the coal pillar, using “large diameter+blasting pressure relief”,and “bolt anchors+double nets+large support plate” combined support.

参考文献

[1] 窦林名,贺虎.煤矿覆岩空间结构OX-F-T演化规律研究[J].岩石力学与工程学报,2012,31(3):453-460.

[2] 窦林名,阚吉亮,李许伟,等.断顶爆破防治冲击矿压技术体系及效果评价研究[J].煤炭科学技术,2020,48(1):24-32.

[3] 姜福兴,刘懿,张益超,等.采场覆岩的“载荷三带”结构模型及其在防冲领域的应用[J].岩石力学与工程学报,2016,35(12):2398-2408.

[4] 于斌,刘长友,刘锦荣.大同矿区特厚煤层综放回采巷道强矿压显现机制及控制技术[J].岩石力学与工程学报,2014,33(9):1863-1872.

[5] 苏超,弓培林,康红普,等.深井临空高应力巷道切顶卸压机理研究[J].采矿与安全工程学报,2020,37(6):1104-1113.

[6] 杜涛涛,鞠文君,陈建强,等.坚硬顶板遗留煤层下综放工作面冲击地压发生机理[J].采矿与安全工程学报,2021,38(6):1144-1151.

[7] 牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[J].中国矿业大学学报,2009,38(1):149-150.

[8] 成云海,姜福兴,庞继禄.特厚煤层综放开采采空区侧向矿压特征及应用[J].煤炭学报,2012,37(7):1088-1093.

[9] 余鑫,边俊奇,刘长友.基于动压巷道围岩控制的临空侧顶板压裂释能参数确定[J].采矿与岩层控制工程学报,2022,4(1):25-34.

[10] 姜鹏飞,张剑,胡滨.沿空留巷围岩受力变形特征及支护对策[J].采矿与安全工程学报,2016,33(1):56-62.

[11] 何团.特厚煤层综放开采巷道沿空侧覆岩结构与煤柱稳定性研究[D].北京:煤炭科学研究总院,2017.

[12] 何文瑞,何富连,陈冬冬,等.坚硬厚基本顶特厚煤层综放沿空掘巷煤柱宽度与围岩控制[J].采矿与安全工程学报,2020,37(2):349-358,365.

[13] 赵勇强.特厚煤层综放沿空掘巷窄时空间隔及围岩控制研究[D].北京:中国矿业大学(北京),2019.

[14] 吴亚军,王亚军,杨树新,等.特厚煤层小煤柱临空巷道矿压显现及控制技术研究[J].煤炭技术,2021,40(6):33-37.

基本信息:

DOI:10.20120/j.cnki.issn.1671-749x.2025.0609

中图分类号:TD324

引用信息:

[1]门鸿,张亚潮,严斌.特厚煤层临空掘进巷道围岩应力演化与防治技术研究[J].陕西煤炭,2025,44(06):51-56+78.DOI:10.20120/j.cnki.issn.1671-749x.2025.0609.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文