nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.44 13-20
基于TPE-LightGBM的平顶山煤田矿井水源判识模型研究
基金项目(Foundation):
邮箱(Email):
DOI: 10.20120/j.cnki.issn.1671-749x.2025.0603
摘要:

快速识别突水水源类型是矿井水害防治的关键环节。为实现对平顶山煤田矿井水源的准确识别,分别提取地表水、第四系孔隙水、石炭系灰岩岩溶水、二叠系砂岩水和寒武系灰岩岩溶水的水样,并选择关键判别指标Na++K+、Ca2+、Mg2+、Cl-、SO42-、HCO-3进行分析。为避免模型因离群数据的干扰产生过拟合现象,利用箱型图准确地显示出数据的离散分布情况,并从数据中快速识别出20组异常值,对研究数据进行了清洗。将清洗后的数据以8∶2的比例划分为学习样本和测试样本,并将学习样本输入光梯度提升机(LightGBM)进行模型训练。利用树状结构帕森估计器(TPE)对LightGBM进行主要参数的优化,构建TPE-LightGBM模型。将LightGBM与TPE-LightGBM的结果对比可知,模型的精度提升了13.9%,表明TPE算法具有一定的有效性。为进一步验证模型的性能,将实验结果与随机搜索-多层感知机(RS-MLP)、遗传算法-极限梯度提升树(GA-XGBoost)模型进行比较。结果显示,TPE-LightGBM模型具有更高的精度和较低的泛化误差,这表明TPE-LightGBM在水源辨识中更具优势并且适用性较强。利用Gini系数对变量的贡献度进行量化,根据计算结果可知Ca2+的贡献度最高,因此需要注意Ca2+的浓度变化。综上所述,TPE-LightGBM具有较高的精确度和泛化能力,在水源识别问题上具有一定的指导意义。

Abstract:

Quickly identifying the type of water inrush source is a key part of mine water damage prevention and control.To realize the accurate identification of mine water sources from the Pingdingshan Coalfield, water samples from different aquifers, such as surface water, Quaternary pore water, Carboniferous tuff karst water, Permian sandstone water, and Cambrian tuff karst water, were extracted, respectively, and the key discriminatory indexes, Na++K+,Ca2+,Mg2+,Cl-,SO42-,and HCO-3,were selected for the analysis.To avoid model overfitting due to the interference of outlier data, the paper utilizes box plots to show the discrete distributions of the data accurately, and twenty sets of outliers are quickly identified from the data to clean the study data.The cleaned data is divided into learning and test samples in the ratio of 8∶2,and the learning samples are fed into the Light Gradient Boosting Machine(LightGBM)for model training.The tree-structured Parson estimator(TPE)is used to optimize the main parameters of LightGBM and construct the TPE-LightGBM model.Comparing the results of LightGBM with those of TPE-LightGBM,the model's accuracy is improved by 13.9%,which indicates that the TPE algorithm is effective.To further validate the performance of the model, the experimental results are compared with the Random Search-Multi-Layer Perceptron Machine(RS-MLP)and Genetic Algorithm-Extreme Gradient Boosting Tree(GA-XGBoost)models.The results show that the TPE-LightGBM model has higher accuracy and lower generalization error, which indicates that TPE-LightGBM is more advantageous and applicable in water source identification.The contribution of the variables was quantified using the Gini coefficients, and based on the calculations, it is clear that Ca2+ has the highest contribution, so it is necessary to pay attention to the changes in the concentration of Ca2+.

参考文献

[1] 许继影,桂和荣,葛春贵,等.淮北青东煤矿深层地热水的水文地球化学特征与水源识别[J].工程地质学报,2021,29(4):1037-1047.

[2] 杜金龙.潞安矿区中部煤矿充水水源水化学特征及水源识别意义[J].西北地质,2022,55(1):208-215.

[3] 董东林,李祥,林刚,等.突水水源的独立性权-模糊可变理论识别模型[J].煤田地质与勘探,2019,47(5):48-53.

[4] 王甜甜,靳德武,刘基,等.动态权-集对分析模型在矿井突水水源识别中的应用[J].煤炭学报,2019,44(9):2840-2850.

[5] 宫凤强,鲁金涛.基于主成分分析与距离判别分析法的突水水源识别方法[J].采矿与安全工程学报,2014,31(2):236-242.

[6] 王心义,徐涛,黄丹.距离判别法在相似矿区突水水源识别中的应用[J].煤炭学报,2011,36(8):1354-1358.

[7] 陈红江,李夕兵,刘爱华,等.用Fisher判别法确定矿井突水水源[J].中南大学学报(自然科学版),2009,40(4):1114-1120.

[8] 刘德民,顾爱民.基于Fisher判别法的岱庄矿涌(突)水水源识别[J].煤炭技术,2023,42(4):94-97.

[9] 朱赛君,姜露,毕波,等.基于组合权-改进灰色关联度理论的矿井突水水源识别[J].煤炭科学技术,2022,50(4):165-172.

[10] 苏玮,姜春,查君珍,等.基于客观组合权-改进集对分析模型的矿井突水水源识别[J].煤炭科学技术,2022,50(4):156-164.

[11] 孟小峰,郝新丽,马超红,等.科学发现中的机器学习方法研究[J].计算机学报,2023,46(5):877-895.

[12] 唐楚哲,王肇国,陈海波.机器学习方法赋能系统软件:挑战、实践与展望[J].计算机研究与发展,2023,60(5):964-973.

[13] 陈珂锐,孟小峰.机器学习的可解释性[J].计算机研究与发展,2020,57(9):1971-1986.

[14] 邵良杉,李相辰.基于MIV-PSO-SVM模型的矿井突水水源识别[J].煤炭科学技术,2018,46(8):183-190.

[15] 秋兴国,刘杰,李娜,等.改进贝叶斯判别法的矿井水源识别模型[J].西安科技大学学报,2022,42(2):237-244.

[16] 徐星,郭兵兵,王公忠.人工神经网络在矿井多水源识别中的应用[J].中国安全生产科学技术,2016,12(1):181-185.

[17] 纪卓辰,丁湘,侯恩科,等.纳林河二号煤矿涌水水源判别的PCA-Logistic方法[J].煤田地质与勘探,2020,48(5):97-105,112.

[18] 温廷新,张波,邵良杉.矿井突水水源识别预测研究:以新庄孜矿为例[J].中国安全科学学报,2014,24(2):100-106.

[19] 于小鸽,刘燚菲,翟培合.基于PCA-AWOA-ELM模型的矿井突水水源识别[J].煤炭科学技术,2023,51(3):182-189.

[20] 董东林,张陇强,张恩雨,等.基于PSO-XGBoost的矿井突水水源快速判识模型[J].煤炭科学技术,2023,51(7):72-82.

[21] 李亚茹,张宇来,王佳晨.面向超参数估计的贝叶斯优化方法综述[J].计算机科学,2022,49(S1):86-92.

[22] 李占山,姚鑫,刘兆赓,等.基于LightGBM的特征选择算法[J].东北大学学报(自然科学版),2021,42(12):1688-1695.

[23] 周健,史秀志,王怀勇.矿井突水水源识别的距离判别分析模型[J].煤炭学报,2010,35(2):278-282.

基本信息:

DOI:10.20120/j.cnki.issn.1671-749x.2025.0603

中图分类号:TD745

引用信息:

[1]谢潇,鲁璐.基于TPE-LightGBM的平顶山煤田矿井水源判识模型研究[J].陕西煤炭,2025,44(06):13-20.DOI:10.20120/j.cnki.issn.1671-749x.2025.0603.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文